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Introduction

Weather hazards to airship operation

Hazard mitigation

Weather over complex terrain

- Prediction

Route planning and optimization
- Severe weather avoidance

- Finding favorable winds
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Airship Weather Hazards

* Winds
- Can equal or exceed the speed of travel

- Turbulence and large eddies can cause
problems

- Wind gusts near ground have caused numerous
airship accidents

«  Terrain-induced winds and turbulence

« Temperature extremes

- Affects buoyancy and hence the ability to climb
or descend

«  Super-stable near surface layers can disrupt
landing attempts
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Airship Weather Hazards

U.S. Naval Historical Center Photograph
http://www.history.navy.mil/photos/images/h42000/h42038.jpg

* lcing
- Loads the airship

» Precipitation (rain, snow, hail)

- Loads the airship
- Induced downdrafts can pose a ,
serious hazard TRy
- Hail can damage the envelope n
e Thunderstorms
- Updrafts and downdrafts
«  Turbulence

- Gust fronts

* Precipitation USS Shenandoah crashed in 1925 when caught in a
* Heavy rain, halil storm over Ohio

4 Energy | Environment | National Security | Health | Critical Infrastructure SAI Ca

© SAIC. All rights reserved.



Hazard Mitigation

Airships are (usually) slow, underpowered, and large
- High inertia
- It may not be possible to take evasive actions at the last minute

Avoid ... Avoid ... Avoid

- Avoid takeoffs and landings in adverse weather

- Avoid regions of adverse weather during flight

Advance planning
- Use detailed weather information and forecasts

- Alternate routes and landing sites

Constant monitoring and updates

- Use detailed weather information and forecasts
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However ...

« Weather forecasting and analysis tools have significantly improved over the years
- Higher resolution
- Improved terrain representation
- Improved physics
- Improved computational performance
« Operations on large parallel systems
* Observational systems have also improved
- Satellite observations
- Doppler radar
* Ground-based
* On-board
- Automated observing systems
* Modern navigation systems
- GPS
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Weather Prediction over Complex Terrain
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Weather Prediction over

Complex Terrain

» Accurate prediction over complex terrain requires the accurate representation of
the terrain in the model

« State-of-the-art models such as the Operational Multiscale Environment model
with Grid Adaptivity (OMEGA) uses a triangular unstructured mesh to represent
the terrain at the best resolution possible under computational constraints

«— Mt. McKinley

<— Kenai Peninsula

¥ < Kodiaklsland

Google
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Example
Alaska — Computational Grid

Resolution:
— 40 — 60 km background
- 15 —-40 km intermediate
- 6 —15 km finest

« 20,000 cells x 36 layers

DataiSIO; NOAA, U avy, NGA, GEBCO
zuogGoogle

CAO

ogle
at’ 58.928442° lon -150.995954 Eye alt 487.89 mi

9 Energy | Environment | National Security | Health | Critical Infrastructure SAI Ca

© SAIC. All rights reserved.



Winds Are Modified by the Terrain
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Turbulence Due to
Terrain-Induced Shear
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Terrain-Induced Weather (example)
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Terrain-Induced Weather (example)
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Airship Routing — Optimization for Weather
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Routing Issues

* Most airships fly in the lower troposphere in which winds and other weather
elements change rapidly due to terrain, land-cover and other factors

 Airships are expected to operate in remote and sparse infrastructure regions
* Need to carry as much fuel as possible

* Fuel vs. payload (cargo) tradeoff

» Long transits increase the possibility of encountering adverse weather

» This apparently simple problem of avoiding adverse weather is made complex
as the weather evolves during the flight
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Routing Methodology

Avoid adverse weather events

- Storms, head winds, precipitation events

Avoid terrain

Find tail winds if possible

Use detailed weather forecasts that include effects of terrain
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Airship Route Optimization for Weather

« Large cargo airships — range vs. payload
considerations

» Default best route (no weather) — Great
Circle Route (minimal distance at the same

altitude)

* Change route to move away from “bad”
weather (e.g., head winds and storms) and
to take advantage of “good” weather (e.g.,
tail winds)

* As an example a trans-Pacific route
between Ft. Lewis, Wash., and Pusan,
South Korea is considered
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Great Circle Route

« Minimum distance

® Vground reduced by
- Headwind
- Crab required to counter crosswind
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Minimum Time Route

» Travel around a large weather system
(40 kt average winds)

« TAS 80 kts

« Assume distance increases by 50
percent (Route A vs. B)

 Assume 40 kt headwind
* Great Circle Time: D/V

e Path A Time: 2 D/V
(=D/(0.5V))

« Path B Time: D/V
( =(1.5D)/(1.5V) )
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Route Optimization Algorithm

* Uses the Great Circle Route as a benchmark

* A Monte Carlo analysis approach is used by breaking the route into multiple
short flight segments

« Each segment is tested against the performance metric
* Only the best segment is retained in each step
* Recursive definition of routes

» Branching is constrained by other factors such as nearness to the destination
and current direction of travel

Destination
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Algorithm Constraints

Around 1 million routes are
sampled per run

* Routes are restricted to a
circular region with the Great
Circle Route as its diameter

* Routes are constrained within a
pre-determined angular sector

* The new routes are weighted by
the previous heading

* The new routes are also
weighted by the heading towards
the final destination
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Optimal Route with Altitude Changes

* As the airship proceeds, the
best altitude is chosen for
each hop

 Altitudes are constrained
between an upper (2500 m
MSL) and lower bound (1000
m MSL)

* Hops every hour with two
tracks spawned with each
hop

* Route segments are checked
against terrain

* GCR: 8421 km; 66.32 hrs
* Optimal: 9013 km; 53.60 hrs
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Optimization Using Ground Speed

Ft. Lewis to Pusan
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Optimization Using Ground Speed

Ft. Lewis to Pusan
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Optimization Using Ground Speed

Ft. Lewis to Pusan
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Optimization Using Ground Speed

Ft. Lewis to Pusan
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Long-Term Performance
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Benefits

» Operational risks due to adverse weather can be significantly reduced
« Substantial fuel savings are possible over long transits
« Airship utility rate is increased - less affected by weather

* Adequate margins of airship flight safety can be maintained without reliance on
pilot guess work

» Planned flight arrival times are less susceptible to disruption from adverse
weather

* Fuel and payload weight can be optimized due to known fuel consumption en
route

» Greater weatherability reduces insurance premium costs
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Airships are vulnerable to weather

Airship operations require an accurate knowledge of weather
A new paradigm in numerical weather prediction

Unstructured adaptive grid

Accurate representation of terrain facilitates accurate prediction of terrain-induced
circulations

Dynamic grid adaptation enables the focusing of computer resources where they
are most needed

Route optimization using weather model output shows a great potential for fuel
savings for large cargo airships as well as improving operational safety

Savings possible for normal aircraft — not so dramatic as airships

Better optimization methods?
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Questions ?
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